Exploring the Thermodynamic Limits of Enhanced H2 Recovery With Inherent Carbon Removal From Low Value Aqueous Biomass Oxygenate Precursors

Author:

Ochonma Prince,Blaudeau Claire,Krasnoff Rosalie,Gadikota Greeshma

Abstract

Rational integration of chemical pathways at the molecular scale to direct thermodynamically favorable enhanced H2 production with inherent carbon removal from low-value substrates can be guided by exploring the thermodynamic limits of feasibility. The substrates of interest are biomass oxygenates that are water-soluble and uneconomical for separation from water. In this study, we investigate the thermodynamic feasibility of recovering H2 with inherent carbon removal from biomass oxygenates such as ethanol, methanol, glycerol, ethylene glycol, acetone, and acetic acid. The influence of biomass oxygenate-to-water ratios, reaction temperature of 150°C–325°C, and CaO or Ca(OH)2 as the alkalinity source on the yields of H2, CH4, CO2, and Ca-carbonate are investigated. By maintaining the fluids in the aqueous phase under pressure, energy needs associated with vaporization are circumvented. The hypothesis that enhanced alkalinity favors the preferential formation of CO (precursor for CO2 formation) over CH4 and aids the formation of calcium carbonate is investigated. The findings from these studies inform the feasibility, design of experiments, and the tuning of reaction conditions for enhanced H2 recovery with inherent carbon removal from biomass oxygenate sources.

Funder

David R. Atkinson Center for a Sustainable Future, Cornell University

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3