Optimized ensemble model for wind power forecasting using hybrid whale and dipper-throated optimization algorithms

Author:

Alhussan Amel Ali,Farhan Alaa Kadhim,Abdelhamid Abdelaziz A.,El-Kenawy El-Sayed M.,Ibrahim Abdelhameed,Khafaga Doaa Sami

Abstract

Introduction: Power generated by the wind is a viable renewable energy option. Forecasting wind power generation is particularly important for easing supply and demand imbalances in the smart grid. However, the biggest challenge with wind power is that it is unpredictable due to its intermittent and sporadic nature. The purpose of this research is to propose a reliable ensemble model that can predict future wind power generation.Methods: The proposed ensemble model comprises three reliable regression models: long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM models. To boost the performance of the proposed ensemble model, the outputs of each model are optimally weighted to form the final prediction output. The ensemble models’ weights are optimized in terms of a newly developed optimization algorithm based on the whale optimization algorithm and the dipper-throated optimization algorithm. On the other hand, the proposed optimization algorithm is converted to binary to be used in feature selection to boost the prediction results further. The proposed optimized ensemble model is tested in terms of a dataset publicly available on Kaggle.Results and discussion: The results of the proposed model are compared to the other six optimization algorithms to prove the superiority of the proposed optimization algorithm. In addition, statistical tests are performed to highlight the proposed approach’s performance and effectiveness in predicting future wind power values. The results are evaluated using a set of criteria such as root mean square error (RMSE), mean absolute error (MAE), and R2. The proposed approach could achieve the following results: RMSE = 0.0022, MAE = 0.0003, and R2 = 0.9999, which outperform those results achieved by other methods.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3