To Prevent or Promote Grid Expansion? Analyzing the Future Role of Power Transmission in the European Energy System

Author:

Cao Karl-Kiên,Pregger Thomas,Haas Jannik,Lens Hendrik

Abstract

Future energy supply systems must become more flexible than they are today to accommodate the significant contributions expected from intermittent renewable power sources. Although numerous studies on planning flexibility options have emerged over the last few years, the uncertainties related to model-based studies have left the literature lacking a proper understanding of the investment strategy needed to ensure robust power grid expansion. To address this issue, we focus herein on two important aspects of these uncertainties: the first is the relevance of various social preferences for the use of certain technologies, and the second is how the available approaches affect the flexibility options for power transmission in energy system models. To address these uncertainties, we analyze a host of scenarios. We use an energy system optimization model to plan the transition of Europe’s energy system. In addition to interacting with the heating and transport sectors, the model integrates power flows in three different ways: as a transport model, as a direct current power flow model, and as a linearized alternating current power flow model based on profiles of power transfer distribution factors. The results show that deploying transmission systems contribute significantly to system adequacy. If investments in new power transmission infrastructure are restricted—for example, because of social opposition—additional power generation and storage technologies are an alternative option to reach the necessary level of adequacy at 2% greater system costs. The share of power transmission in total system costs remains widely stable around 1.5%, even if cost assumptions or the approaches for modeling power flows are varied. Thus, the results indicate the importance of promoting investments in infrastructure projects that support pan-European power transmission. However, a wide range of possibilities exists to put this strategy into practice.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3