Service scheduling strategy for microservice and heterogeneous multi-cores-based edge computing apparatus in smart girds with high renewable energy penetration

Author:

Hu Kaiqiang,Qu Jing,Cai Zexiang,Li Xiaohua,Liu Yuanyuan,Zheng Junjie

Abstract

The microservice-based smart grid service (SGS) organization and the heterogeneous multi-cores-based computing resource supply are the development direction of edge computing in smart grid with high penetration of renewable energy sources and high market-oriented. However, their application also challenges the service schedule for edge computing apparatus (ECA), the physical carrier of edge computing. In the traditional scheduling strategy of SGS, an SGS usually corresponds to an independent application or component, and the heterogeneous multi-core computing environment is also not considered, making it difficult to cope with the above challenges. In this paper, we propose an SGS scheduling strategy for the ECA. Specifically, we first present an SGS scheduling framework of ECA and give the essential element of meeting SGS scheduling. Then, considering the deadline and importance attributes of the SGS, a microservice scheduling prioritizing module is proposed. On this basis, the inset-based method is used to allocate the microservice task to the heterogeneous multi-cores to utilize computing resources and reduce the service response time efficiently. Furthermore, we design the scheduling unit dividing module to balance the delay requirement between the service with early arrival time and the service with high importance in high concurrency scenarios. An emergency mechanism (EM) is also presented for the timely completion of urgent SGSs. Finally, the effectiveness of the proposed service scheduling strategy is verified in a typical SGS scenario in the smart distribution transformer area.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3