Toward Green Optoelectronics: Environmental-Friendly Colloidal Quantum Dots Photodetectors

Author:

Miao Sijia,Cho Yuljae

Abstract

Colloidal quantum dots (CQDs) have attracted tremendous research interests in future-generation energy, electronic, optoelectronic, and bio-imaging applications due to their fascinating material properties, such as solution processability at room temperature and under ambient conditions, compatibility with various functional materials, and high photostability as well as photosensitivity. Among the various optoelectronic applications of CQDs, optical light sensors, which convert photonic energy into electrical signals, have been of particular interest because they are one of the key building blocks for modern communication and imaging applications, including medical X-ray and near-infrared imaging, visible light cameras, and machine vision. However, CQDs, which have been widely researched for photodetectors (PDs) so far, contain toxic and hazardous heavy metals, namely, lead (Pb), cadmium (Cd), and mercury (Hg). These substances are extremely toxic and harmful to the environment as well as human beings. Therefore, it is highly desirable to substitute CQDs containing heavy metals with nontoxic and environmentally friendly ones to realize green optoelectronics. In this review article, we introduce various kinds of heavy metal–free CQDs and their PD applications. This article comprehensively includes working mechanisms of PDs, various kinds of nontoxic and environmentally friendly CQD-based PDs, advanced heterojunction PDs, and discussion for future perspectives.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3