How Does Industrial Structure Upgrading Affect the Global Greenhouse Effect? Evidence From RCEP and Non-RCEP Countries

Author:

Dong Jiajia,Dou Yue,Jiang Qingzhe,Zhao Jun

Abstract

This study empirically investigates the impact of industrial structure upgrading on global carbon dioxide (CO2) emissions by employing a balanced dataset of 73 countries over the period 1990–2019. After conducting a series of empirical tests, we used the fixed effect (FE) and random effect (RE) methods to estimate the econometric model, and divided the full sample data into two subsamples, i.e., Regional Comprehensive Economic Partnership (RCEP) countries and non-RCEP countries, for heterogeneous analysis. This study also examines the mediating role of technological innovation in the relationship between industrial structure upgrading and global CO2 emissions. The main findings indicate that: (1) both industrial structure upgrading and technological innovation show significant negative impacts on CO2 emissions in the global panel, the RCEP countries, and the non-RCEP countries; (2) industrial structure upgrading not only affects CO2 emissions directly, but also has an indirect impact on global CO2 emissions by promoting technological innovation; and (3) the environmental Kuznets curve (EKC) hypothesis is verified in this study; in other words, both economic growth and CO2 emissions exhibit a significant inverted U-shaped relationship in the global panel, the RCEP countries, and the non-RCEP countries. Finally, we highlighted some important policy implications with respect to promoting industrial structure upgrading and mitigating the greenhouse effect.

Funder

Ministry of Science and Technology of the People's Republic of China

Chinese National Funding of Social Sciences

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3