Abstract
In order to break through the existing battery technology of electric vehicles, this paper proposes to use heat pump air conditioning instead of the original PTC heating system potential. First, the advantages and disadvantages of different heat pump models for new energy vehicles are analyzed and compared. Second, a fuzzy inference system is constructed based on the machine learning model to observe the temperature of the passenger compartment using the temperature sensor inside the tram and to determine the need for the air conditioning system to be turned on in the heating/cooling mode by comparing it with the set temperature. Finally, the results show that the machine learning algorithm is able to monitor and adaptively adjust the interior temperature to further enhance the adaptability of the system with low volatility and high accuracy. The proposed research study can lay the foundation for further optimizing the design of heat pump air conditioners for electric vehicles.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献