Water level control of nuclear steam generators using intelligent hierarchical autonomous controller

Author:

Peng Binsen,Ma Xintong,Xia Hong

Abstract

The challenge of water level control in steam generators, particularly at low power levels, has always been a critical aspect of nuclear power plant operation. To address this issue, this paper introduces an IHA controller. This controller employs a CPI controller as the primary controller for direct water level control, coupled with an agent-based controller optimized through a DRL algorithm. The agent dynamically optimizes the parameters of the CPI controller in real-time based on the system’s state, resulting in improved control performance. Firstly, a new observer information is obtained to get the accurate state of the system, and a new reward function is constructed to evaluate the status of the system and guide the agent’s learning process. Secondly, a deep ResNet with good generalization performance is used as the approximator of action value function and policy function. Then, the DDPG algorithm is used to train the agent-based controller, and an advanced controller with good performance is obtained after training. Finally, the popular UTSG model is used to verify the effectiveness of the algorithm. The results demonstrate that the proposed method achieves rise times of 73.9 s, 13.6 s, and 16.4 s at low, medium, and high power levels, respectively. Particularly, at low power levels, the IHA controller can restore the water level to its normal state within 200 s. These performances surpass those of the comparative methods, indicating that the proposed method excels not only in water level tracking but also in anti-interference capabilities. In essence, the IHA controller can autonomously learn the control strategy and reduce its reliance on the expert system, achieving true autonomous control and delivering excellent control performance.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3