Multi-Objective Optimization Method for the Shape of Large-Space Buildings Dominated by Solar Energy Gain in the Early Design Stage

Author:

Zhang Longwei,Wang Chao,Chen Yu,Zhang Lingling

Abstract

Large-space buildings feature a sizable interface for receiving solar radiation, and optimizing their shape in the early design stage can effectively increase their solar energy harvest while considering both energy efficiency and space utilization. A large-space building shape optimization method was developed based on the “modeling-calculation-optimization” process to transform the “black box” mode in traditional design into a “white box” mode. First, a two-level node control system containing core space variables and envelope variables is employed to construct a parametric model of the shape of a large-space building. Second, three key indicators, i.e., annual solar radiation, surface coefficient, and space efficiency, are used to representatively quantify the performance in terms of sunlight capture, energy efficiency, and space utilization. Finally, a multi-objective genetic algorithm is applied to iteratively optimize the building shape, and the Pareto Frontier formed by the optimization results provides the designer with sufficient alternatives and can be used to assess the performance of different shapes. Further comparative analysis of the optimization results can reveal the typical shape characteristics of the optimized solutions and potentially determine the key variables affecting building performance. In a case study of six large-space buildings with typical shapes, the solar radiation of the optimized building shape solutions was 13.58–39.74% higher than that of reference buildings 1 and 3; compared with reference buildings 2 and 4, the optimized solutions also achieved an optimal balance of the three key indicators. The results show that the optimization method can effectively improve the comprehensive performance of buildings.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3