Author:
Hart Genna,Gilly Austin,Koether Marina,McElroy Thomas,Greipsson Sigurdur
Abstract
The accumulation of Pb deposits in soil is a growing global concern. Soil remediation options include phytoextraction that involves the use of plants and associated soil microorganism. Switchgrass (Panicum virgatum L.), a second-generation bioenergy crop was used in this study due to its ability to produce high biomass and grow in metal polluted soils. Plants were grown in Pb-contaminated soil (5,802.5 mg kg−1) in an environmentally controlled greenhouse. Plants were treated with exogenous application of the plant growth regulator (PGR) benzylaminopurine (BAP) or complete foliar nutrient solution (Triple-12®) twice a week until harvested. Plants also received the soil fungicide propiconazole (Infuse™) that was followed by the soil chelate nitrilotriacetic acid (NTA). Two concentrations of NTA were compared (5 mM and 10 mM) and combined application of NTA (10 mM) + APG (alkyl polyglucoside). Soil fungicide (propiconazole) was used to arrest arbuscular mycorrhizal fungi (AMF) activities in the roots of switchgrass in order to enhance Pb-phytoextraction. Lead (Pb) was measured in dry plant materials using an ICP-OES. Phytoextraction by switchgrass was significantly improved by dual soil applications of 10 mM NTA, APG and foliar applications of BAP which resulted in the greatestaverage Pb concentration of 5,942 mg kg−1. The average dry mass of plants and the average value for total phytoextracted Pb (mg) per pot were significantly greatestfor plants treated with 10 mM NTA, APG and BAP. Also, plants treated with NTA and BAP showed average bioconcentration factor of 1.02. The results suggested that chemically enhanced phytoextraction significantly improved biomass production of switchgrass and at the same time increased phytoextracted Pb which is important for phytoremediation and bioenergy industry.
Funder
National Science Foundation
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献