Preparation and characterization of Al-12Si/ceramic composite phase change heat storage material

Author:

Zhang Gaoqun,Duan Dabo,Zhang Jingcen,Hao Junjie,Deng Zhanfeng

Abstract

Thermal storage ceramics using metals as phase change materials (PCMs) have both high thermal conductivity and high heat storage density. However, in the process of use is very easy to occur in the metal phase change material leakage, will seriously affect the service life of the thermal storage ceramics. In this study, ceramic composite phase change heat storage materials with Al-12Si alloy as phase change material were prepared. Firstly, Al-12Si was pretreated by sol-gel method and high temperature heat treatment to obtain the pretreated Al-12Si alloy powder with dense alumina shell layer. After that, the pretreated Al-12Si alloy powder was mixed and pressed with alumina, silicon dioxide, magnesium oxide, and mullite respectively, and sintered at 1,100°C, 1,200°C, or 1,300°C. The experimental results show that the metal phase change materials and the four ceramic materials show good chemical compatibility, and pretreated Al-12Si essentially retains its initial shape and is uniformly dispersed in the heat storage material. Among all the samples, the pre-treated Al-12Si/mullite ceramic thermal storage materials with a sintering temperature of 1,200°C showed the best thermal storage performance. The thermal conductivity of the samples was up to 17.94 W/(m·K). The latent heat storage value was 139.51 J/g before thermal cycling, 138.27 J/g after 100 thermal cycling, which was only decreased by 0.89%, and there was almost no alloy leakage. This study has successfully realized that the ceramic thermal storage material possesses high thermal conductivity, high thermal storage density and excellent thermal cycling performance at the same time, and provides a new method for the production and preparation of Al-12Si/ceramic heat storage materials, which has great potential for application in heat storage systems.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3