Author:
Wang Xiaoxue,Gu Liting,Liang Dong
Abstract
The increasing penetration of distributed energy resources and flexible electrical loads makes hybrid AC/DC distribution networks become a crucial trend for future modern distribution networks. To increase the flexibility and energy efficiency of hybrid AC/DC distribution networks, a decentralized and multi-objective coordinated optimization method by considering different control means is proposed. The salient feature of this method is that it comprehensively and properly models the full variety of possible control means (i.e., active/reactive power of distributed generation, on load tap changers, flexible distribution switch, voltage source converter). The abundant means are utilized to optimize operational cost, voltage deviation and network losses simultaneously. Then, a fully decentralized optimization method based on alternating direction multiplier method (ADMM) is proposed. The hybrid AC/DC distribution networks are divided into several sub-networks. Flexible interconnected electronic devices are utilized to transfer energy between different sub-networks to achieve the efficient and flexible utilization of controllable resources in hybrid AC/DC distribution networks. Finally, the proposed coordinated optimization method is tested on a modified dual IEEE 33-node network to demonstrate its effectiveness and advantages, and the performance of the centralized method and our proposed method is compared.
Funder
Natural Science Foundation of Hebei Province
China Postdoctoral Science Foundation
Department of Education of Hebei Province
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献