Comparative study of thermally integrated pumped thermal energy storage based on the organic rankine cycle with different working fluid pairs

Author:

Jiang Xuhui,Zhang Xi,Wang Ruiqiong,Wang Xurong

Abstract

Thermal integrated pumped thermal energy storage (TIPTES) systems with the features of high efficiency, flexibility, and reliability, have attracted increasing attention since they can integrate low-grade heat sources to further improve the utilization and economic viability of renewable energy. In this study, a typical TIPTES system driven by waste flue gas is established, and the heat pump and organic Rankine cycle (ORC) are chosen as the charging and discharging cycle, respectively. Four organic fluids, including R600, R245fa, R601a, and R1336mzz(Z), are selected to compose sixteen different working fluid pairs for thermodynamic analysis. The effects of key parameters, like heat pump system evaporation temperature and hot storage tank temperature, on system performance were analyzed, and the single-objective optimization was conducted. A comparative study was carried out to identify the best working fluid pair according to the optimization results. Results show that the system’s power-to-power efficiency goes up as the evaporation temperature increases while an increase in the heat storage temperature decreases the exergy efficiency of the TIPTES system. Optimization results show that the R245fa + R245fa is the best working fluid pair, and in this system, the ORC evaporator has the largest exergy destruction at about 260.84 kW, which is 20.2% of the total. On the other hand, the ORC pump has the smallest exergy destruction only about 0.5%. This study also finds that the system’s power-to-power efficiency of using different working fluids in either heat pump cycles or ORC cycles is lower than that of using the same working fluid throughout the entire system.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3