Author:
Liu Renxiong,Zhang Chaolong
Abstract
An active balancing method based on the state of charge (SOC) and capacitance is presented in this article to solve the inconsistency problem of lithium-ion batteries in electric vehicles. The terminal voltage of each battery is collected first. Then, each battery SOC is accurately estimated by an extended Kalman filter (EKF) algorithm. In the experiment, the maximum absolute error of SOC evaluation is only 0.0061, and the mean absolute error is 0.0013 when the initial battery SOC is clear. Meanwhile, the maximum absolute error of SOC evaluation is 0.5 and the average absolute error of SOC is 0.0015 when the initial battery SOC is not clear. Afterward, an active balancing circuit based on the estimated battery SOC and capacitance is designed. The energy of capacitance is charged by the battery whose SOC is higher than the other batteries through the circuit to avoid the battery being overcharged. Then, the SOC of batteries gradually turn consistent. In the simulation experiment, the SOC difference of batteries is 7% before the balancing. Meanwhile, the SOC difference of batteries reduces to 0.02% after the balancing and the consuming time is merely 272s, which manifests that the proposed balancing method has a fast balancing speed and better balancing efficiency.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献