An energy management scheme for improving the fuel economy of a fuel cell/battery/supercapacitor-based hybrid electric vehicle using the coyote optimization algorithm (COA)

Author:

Mounica V.,Obulesu Y. P.

Abstract

This study describes a multi-input power system that is suited for fueling electric automobiles, InterCitys, and airplanes, particularly in situations with significant fluctuating load demand. The dual framework utilizes fuel cells (FC), batteries, and super capacitors (SCs). An energy management system (EMS) remains a critical aspect of lowering overall hydrogen consumption and minimizing the degradation of FC functionality. A novel EMS that has been suggested focused on a novel optimization method known as the Coyote optimization algorithm (COA), and it considers the fact that the total load is adequately supplied within the limitations of each power source. To minimize the hydrogen consumption. By maximizing the power generated by the energy storage devices, the energy acquired from the FC is reduced. In comparison to other optimization methods, the COA would be a practical, effective, and relatively straightforward optimizer that only involves a limited number of controlling factors to be set. The framework application MATLAB/Simulink is used to create the proposed method. In order to show the effectiveness of the proposed methodology, a study with several different conventional techniques is performed, which includes the classic proportional-integral control mechanism, the frequency decoupling with state machine (FDSM) controlling technique, the equivalent consumption minimization scheme (ECMS), and the external energy minimization scheme (EEMS). The efficacy of the algorithm and the FC’s aggregate H2 usage serve as the focal points for comparison in this work. The outcomes demonstrate that the recommended COA strategy is superior and more effective than the alternative approaches.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3