Fault mechanisms and diagnosis methods for typical load mutation problems of turbo-generator sets

Author:

Yao Kun,Wang Ying,Fan Shuangshuang,Wan Jie,Wu Henggang,Cao Yong

Abstract

Since flexible peak shaving has been implemented in a growing number of high-power turbo-generator sets in the power grid owing to increasing demand, the load control performance of steam turbines directly affects the safety and efficiency of the unit operation. Load-following issues, especially load mutation, weaken the frequency control performance of the unit and cause load fluctuation faults, threatening power grid safety and stability. However, the definition, classification, characterization, generation mechanism, and diagnostic methods for load mutation problems have not been systematically researched. Based on the operational data of various turbo-generator set cases, this study systematically assessed three typical load mutation problems; namely, the common fault of unreasonable parameter settings of the control system as well as new-found faults in the actuator hardware and electrical interference. Subsequently, the fault mechanisms and characterization parameters of the different set capacities were analyzed and extracted. Furthermore, a diagnosis method was designed according to the actual problem, based on which fault type was identified. Case analysis of typical sets demonstrated that this method can quickly test and diagnose faults when in actual real-world scenarios and effectively determine the cause of the fault. This method can also detect the initial fault features, which is convenient for daily maintenance and avoids fault aggravation.

Funder

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3