Wide range in estimates of hydrogen emissions from infrastructure

Author:

Esquivel-Elizondo Sofia,Hormaza Mejia Alejandra,Sun Tianyi,Shrestha Eriko,Hamburg Steven P.,Ocko Ilissa B.

Abstract

Hydrogen holds tremendous potential to decarbonize many economic sectors, from chemical and material industries to energy storage and generation. However, hydrogen is a tiny, leak-prone molecule that can indirectly warm the climate. Thus, hydrogen emissions from its value chain (production, conversion, transportation/distribution, storage, and end-use) could considerably undermine the anticipated climate benefits of a hydrogen economy. Several studies have identified value chain components that may intentionally and/or unintentionally emit hydrogen. However, the amount of hydrogen emitted from infrastructure is unknown as emissions have not yet been empirically quantified. Without the capacity to make accurate direct measurements, over the past two decades, some studies have attempted to estimate total value chain and component-level hydrogen emissions using various approaches, e.g., assumptions, calculations via proxies, laboratory experiments, and theory-based models (simulations). Here, we synthesize these studies to provide an overview of the available knowledge on hydrogen emissions across value chains. Briefly, the largest ranges in estimated emissions rates are associated with liquefaction (0.15%–10%), liquid hydrogen transporting and handling (2%–20%), and liquid hydrogen refueling (2%–15%). Moreover, present and future value chain emission rate estimates vary widely (0.2%–20%). Field measurements of hydrogen emissions throughout the value chain are critically needed to sharpen our understanding of hydrogen emissions and, with them, accurately assess the climate impact of hydrogen deployment.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3