Dynamically Optimizing Network Structure Based on Synaptic Pruning in the Brain

Author:

Zhao Feifei,Zeng Yi

Abstract

Most neural networks need to predefine the network architecture empirically, which may cause over-fitting or under-fitting. Besides, a large number of parameters in a fully connected network leads to the prohibitively expensive computational cost and storage overhead, which makes the model hard to be deployed on mobile devices. Dynamically optimizing the network architecture by pruning unused synapses is a promising technique for solving this problem. Most existing pruning methods focus on reducing the redundancy of deep convolutional neural networks by pruning unimportant filters or weights, at the cost of accuracy drop. In this paper, we propose an effective brain-inspired synaptic pruning method to dynamically modulate the network architecture and simultaneously improve network performance. The proposed model is biologically inspired as it dynamically eliminates redundant connections based on the synaptic pruning rules used during the brain's development. Connections are pruned if they are not activated or less activated multiple times consecutively. Extensive experiments demonstrate the effectiveness of our method on classification tasks of different complexity with the MNIST, Fashion MNIST, and CIFAR-10 datasets. Experimental results reveal that even for a compact network, the proposed method can also remove up to 59–90% of the connections, with relative improvement in learning speed and accuracy.

Funder

Beijing Municipal Science and Technology Commission

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Developmental Neuroscience,Neuroscience (miscellaneous)

Reference37 articles.

1. Convolutional neural networks for speech recognition;Abdel-Hamid;IEEE/ACM Trans. Audio Speech Lang. Proc.,2014

2. An evolutionary salgorithm that constructs recurrent neural networks;Angeline;IEEE Trans. Neural Netw.,1994

3. Synaptic pruning in development: a computational account;Chechik;Neural Comput.

4. Synaptic pruning in development: a novel account in neural terms;Chechik

5. Neuronal regulation: a biologically plausible mechanism for efficient synaptic pruning in development;Chechik;Neurocomputing,1999

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3