An Expanded Framework for Situation Control

Author:

Llinas James,Malhotra Raj

Abstract

There is an extensive body of literature on the topic of estimating situational states, in applications ranging from cyber-defense to military operations to traffic situations and autonomous cars. In the military/defense/intelligence literature, situation assessment seems to be the sine qua non for any research on surveillance and reconnaissance, command and control, and intelligence analysis. Virtually all of this work focuses on assessing the situation-at-the-moment; many if not most of the estimation techniques are based on Data and Information Fusion (DIF) approaches, with some recent schemes employing Artificial Intelligence (AI) and Machine Learning (ML) methods. But estimating and recognizing situational conditions is most often couched in a decision-making, action-taking context, implying that actions may be needed so that certain goal situations will be reached as a result of such actions, or at least that progress toward such goal states will be made. This context thus frames the estimation of situational states in the larger context of a control-loop, with a need to understand the temporal evolution of situational states, not just a snapshot at a given time. Estimating situational dynamics requires the important functions of situation recognition, situation prediction, and situation understanding that are also central to such an integrated estimation + action-taking architecture. The varied processes for all of these combined capabilities lie in a closed-loop “situation control” framework, where the core operations of a stochastic control process involve situation recognition—learning—prediction—situation “error” assessment—and action taking to move the situation to a goal state. We propose several additional functionalities for this closed-loop control process in relation to some prior work on this topic, to include remarks on the integration of control-theoretic principles. Expanded remarks are also made on the state of the art of the schemas and computational technologies for situation recognition, prediction and understanding, as well as the roles for human intelligence in this larger framework.

Funder

U.S. Air Force

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Developmental Neuroscience,Neuroscience (miscellaneous)

Reference63 articles.

1. Towards an ontology of scenes and situations;Almeida;Proceedings of the 2018 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA).,2018

2. Learning how to generalize.;Austerweil;Cogn. Sci.,2019

3. Template-based multi-agent plan recognition for tactical situation assessment;Azarewicz;In: Proceedings of the Fifth IEEE Conference on Artificial Intelligence Applications.,1989

4. Situation prediction nets – playing the token game for ontology-driven situation awareness;Baumgartner;Proceedings of 29th International Conference on Conceptual Modeling.,2010

5. A survey of upper ontologies for situation awareness;Baumgartner;Proc. of the 4th Intl. Conf. on Knowledge Sharing and Collaborative Engineering.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3