Tuning Neural Synchronization: The Role of Variable Oscillation Frequencies in Neural Circuits

Author:

Lowet Eric,De Weerd Peter,Roberts Mark J.,Hadjipapas Avgis

Abstract

Brain oscillations emerge during sensory and cognitive processes and have been classified into different frequency bands. Yet, even within the same frequency band and between nearby brain locations, the exact frequencies of brain oscillations can differ. These frequency differences (detuning) have been largely ignored and play little role in current functional theories of brain oscillations. This contrasts with the crucial role that detuning plays in synchronization theory, as originally derived in physical systems. Here, we propose that detuning is equally important to understand synchronization in biological systems. Detuning is a critical control parameter in synchronization, which is not only important in shaping phase-locking, but also in establishing preferred phase relations between oscillators. We review recent evidence that frequency differences between brain locations are ubiquitous and essential in shaping temporal neural coordination. With the rise of powerful experimental techniques to probe brain oscillations, the contributions of exact frequency and detuning across neural circuits will become increasingly clear and will play a key part in developing a new understanding of the role of oscillations in brain function.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Developmental Neuroscience,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3