Lessons From Deep Neural Networks for Studying the Coding Principles of Biological Neural Networks

Author:

Bae Hyojin,Kim Sang Jeong,Kim Chang-Eop

Abstract

One of the central goals in systems neuroscience is to understand how information is encoded in the brain, and the standard approach is to identify the relation between a stimulus and a neural response. However, the feature of a stimulus is typically defined by the researcher's hypothesis, which may cause biases in the research conclusion. To demonstrate potential biases, we simulate four likely scenarios using deep neural networks trained on the image classification dataset CIFAR-10 and demonstrate the possibility of selecting suboptimal/irrelevant features or overestimating the network feature representation/noise correlation. Additionally, we present studies investigating neural coding principles in biological neural networks to which our points can be applied. This study aims to not only highlight the importance of careful assumptions and interpretations regarding the neural response to stimulus features but also suggest that the comparative study between deep and biological neural networks from the perspective of machine learning can be an effective strategy for understanding the coding principles of the brain.

Funder

National Research Foundation

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Developmental Neuroscience,Neuroscience (miscellaneous)

Reference81 articles.

1. Tensorflow: large-scale machine learning on heterogeneous distributed systems;Abadi;arXiv,2016

2. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics;Allen;Science,2019

3. Association, correlation and causation;Altman;Nat. Methods,2015

4. Noise correlations and perceptual inference;Bányai;Curr. Opin. Neurobiol.,2019

5. Analyzing biological and artificial neural networks: challenges with opportunities for synergy?;Barrett;Curr. Opin. Neurobiol.,2019

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3