Developing Proprioceptive Countermeasures to Mitigate Postural and Locomotor Control Deficits After Long-Duration Spaceflight

Author:

Macaulay Timothy R.,Peters Brian T.,Wood Scott J.,Clément Gilles R.,Oddsson Lars,Bloomberg Jacob J.

Abstract

Astronauts experience post-flight disturbances in postural and locomotor control due to sensorimotor adaptations during spaceflight. These alterations may have adverse consequences if a rapid egress is required after landing. Although current exercise protocols can effectively mitigate cardiovascular and muscular deconditioning, the benefits to post-flight sensorimotor dysfunction are limited. Furthermore, some exercise capabilities like treadmill running are currently not feasible on exploration spaceflight vehicles. Thus, new in-flight operational countermeasures are needed to mitigate postural and locomotor control deficits after exploration missions. Data from spaceflight and from analog studies collectively suggest that body unloading decreases the utilization of proprioceptive input, and this adaptation strongly contributes to balance dysfunction after spaceflight. For example, on return to Earth, an astronaut’s vestibular input may be compromised by adaptation to microgravity, but their proprioceptive input is compromised by body unloading. Since proprioceptive and tactile input are important for maintaining postural control, keeping these systems tuned to respond to upright balance challenges during flight may improve functional task performance after flight through dynamic reweighting of sensory input. Novel approaches are needed to compensate for the challenges of balance training in microgravity and must be tested in a body unloading environment such as head down bed rest. Here, we review insights from the literature and provide observations from our laboratory that could inform the development of an in-flight proprioceptive countermeasure.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Developmental Neuroscience,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3