Deep learning based recognition of shape-coded microparticles

Author:

Sahin Mehmet Akif,van den Eijnden Leander,Bhiri Cyrine,Destgeer Ghulam

Abstract

Encoded particles have been used for multiplexed diagnostics, drugs testing, and anti-counterfeiting applications. Recently, shape-coded hydrogel particles with amphiphilic properties have enabled an amplified duplexed bioassay. However, a limitation to read multiple particle shape-codes in an automated manner and within a reasonable time prevents a widespread adaptation of such potent diagnostic platforms. In this work, we applied established deep learning based multi-class segmentation models, such as U-Net, Attention U-Net, and UNet3+, to detect five or more particle shape-codes within a single image in an automated fashion within seconds. We demonstrated that the tested models provided prosaic results, when implemented on an imbalanced and limited raw dataset, with the best intersection over union (IoU) scores of 0.76 and 0.46 for six- and eleven-class segmentation, respectively. We introduced augmentation by translocation (ABT) technique to enhance the performances of the tested models significantly, where the best IoU scores for the six and eleven classes increased to 0.92 and 0.74, respectively. These initial findings to detect multiple shapes of the particles in an automated manner underscore the potential of shape-coded particles to be used in multiplexed bioassays. The code is available at: github.com/destgeerlab/shape-coded-particles.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3