Identification and verification of the pyroptosis-related prognostic signature and its associated regulatory axis in bladder cancer

Author:

Tu Yaofen,Ding Xiaodi,Mao Zujie

Abstract

Background: Pyroptosis is an inflammatory form of cell death triggered by certain inflammasomes. Accumulating studies have shown the involvement of pyroptosis in the proliferation, invasion, and metastasis and prognosis of cancer. The prognostic value of pyroptosis-related genes (PRGs) and their association with immune infiltration in bladder cancer have not yet been elucidated.Methods: We performed a comprehensive analysis of the prognostic value and immune infiltrates of PRGs in bladder cancer using the TCGA dataset. qRT-PCR was also performed to verify our result.Results: Among 33 PRGs, 14 PRGs were upregulated or downregulated in bladder cancer tissue versus normal tissue. We also summarized copy number variations and somatic mutations of PRGs in bladder cancer. By using consensus clustering analysis of PRGs with prognostic significance, we divided the bladder cancer cohort into two subtypes significantly by different prognosis and immune infiltration. Using the LASSO Cox regression analysis, a prognostic signature including six PRGs was constructed for bladder cancer and the patients could be classified into a low- or high-risk group. Interestingly, this prognostic signature had a favorable performance for predicting the prognosis of bladder cancer patients. Moreover, further analysis demonstrated a significant difference in gender, tumor grade, clinical stage, TNM stage, immunoScore, and immune cell infiltration between the high- and low-risk groups in bladder cancer. We also identified an lncRNA SNHG14/miR-20a-5p/CASP8 regulatory axis in bladder cancer by constructing a ceRNA network.Conclusion: We identified a PRG-associated prognostic signature associated with the prognosis and immune infiltrates for bladder cancer and targeting pyroptosis may be an alternative approach for therapy. Further vivo and vitro experiments are necessary to verify these results.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3