High Ambient Temperature Aggravates Experimental Autoimmune Uveitis Symptoms

Author:

Pan Su,Tan Handan,Chang Rui,Wang Qingfeng,Zhu Ying,Chen Lin,Li Hongxi,Su Guannan,Zhou Chunjiang,Cao Qingfeng,Kijlstra Aize,Yang Peizeng

Abstract

Whether ambient temperature influences immune responses leading to uveitis is unknown. We thus tested whether ambient temperature affects the symptoms of experimental autoimmune uveitis (EAU) in mice and investigated possible mechanisms. C57BL/6 mice were kept at a normal (22°C) or high temperature (30°C) housing conditions for 2 weeks and were then immunized with human interphotoreceptor retinoid-binding protein (IRBP651–670) peptide to induce EAU. Histological changes were monitored to evaluate the severity of uveitis. Frequency of Th1 cells and Th17 cells was measured by flow cytometry (FCM). The expression of IFN-γ and IL-17A mRNA was measured by real-time qPCR. The generation of neutrophil extracellular traps (NETs) was quantified by enzyme-linked immunosorbent assay (ELISA). Differential metabolites in the plasma of the mice kept in the aforementioned two ambient temperatures were measured via ultra-high-performance liquid chromatography triple quadrupole mass spectrometry quadrupole time of flight mass spectrometry (UHPLC-QQQ/MS). The differential metabolites identified were used to evaluate their effects on differentiation of Th1 and Th17 cells and generation of NETs in vitro. The results showed that EAU mice kept at high temperature experienced a more severe histopathological manifestation of uveitis than mice kept at a normal temperature. A significantly increased frequency of Th1 and Th17 cells in association with an upregulated expression of IFN-γ and IL-17A mRNA was observed in the splenic lymphocytes and retinas of EAU mice in high temperature. The expression of NETs as evidenced by myeloperoxidase (MPO) and neutrophil elastase (NE), was significantly elevated in serum and supernatants of neutrophils from EAU mice kept at high temperature compared to the normal temperature group. The metabolites in the plasma from EAU mice, fumaric acid and succinic acid, were markedly increased in the high temperature group and could induce the generation of NETs via the NADPH oxidase-dependent pathway, but did not influence the frequency of Th1 and Th17 cells. Our findings suggest that an increased ambient temperature is a risk factor for the development of uveitis. This is associated with the induction of Th1 and Th17 cells as well as the generation of NETs which could be mediated by the NADPH oxidase-dependent pathway.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference47 articles.

1. Rodent models of experimental autoimmune uveitis.;Agarwal;Methods Mol. Biol.,2012

2. Neutrophil/lymphocyte ratio and mean platelet volume in Behcet’s disease.;Balkarli;Eur. Rev. Med. Pharmacol. Sci.,2016

3. Molecular mechanisms regulating NETosis in infection and disease.;Branzk;Semin. Immunopathol.,2013

4. Higher temperatures increase suicide rates in the United States and Mexico.;Burke;Nat. Clim. Chang.,2018

5. Identification of Ribosomal Protein S4, Y-linked 1 as a cyclosporin a plus corticosteroid resistance gene.;Chang;J. Autoimmun.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3