FOntCell: Fusion of Ontologies of Cells

Author:

Cabau-Laporta Javier,Ascensión Alex M.,Arrospide-Elgarresta Mikel,Gerovska Daniela,Araúzo-Bravo Marcos J.

Abstract

High-throughput cell-data technologies such as single-cell RNA-seq create a demand for algorithms for automatic cell classification and characterization. There exist several cell classification ontologies with complementary information. However, one needs to merge them to synergistically combine their information. The main difficulty in merging is to match the ontologies since they use different naming conventions. Therefore, we developed an algorithm that merges ontologies by integrating the name matching between class label names with the structure mapping between the ontology elements based on graph convolution. Since the structure mapping is a time consuming process, we designed two methods to perform the graph convolution: vectorial structure matching and constraint-based structure matching. To perform the vectorial structure matching, we designed a general method to calculate the similarities between vectors of different lengths for different metrics. Additionally, we adapted the slower Blondel method to work for structure matching. We implemented our algorithms into FOntCell, a software module in Python for efficient automatic parallel-computed merging/fusion of ontologies in the same or similar knowledge domains. FOntCell can unify dispersed knowledge from one domain into a unique ontology in OWL format and iteratively reuse it to continuously adapt ontologies with new data endlessly produced by data-driven classification methods, such as of the Human Cell Atlas. To navigate easily across the merged ontologies, it generates HTML files with tabulated and graphic summaries, and interactive circular Directed Acyclic Graphs. We used FOntCell to merge the CELDA, LifeMap and LungMAP Human Anatomy cell ontologies into a comprehensive cell ontology. We compared FOntCell with tools used for the alignment of mouse and human anatomy ontologies task proposed by the Ontology Alignment Evaluation Initiative (OAEI) and found that the Fβ alignment accuracies of FOntCell are above the geometric mean of the other tools; more importantly, it outperforms significantly the best OAEI tools in cell ontology alignment in terms of Fβ alignment accuracies.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference45 articles.

1. BigMPI4py: python module for parallelization of big data objects discloses germ layer specific DNA demethylation motifs,;Ascension,2020

2. An ontology for cell types;Bard;Genome Biol.,2005

3. A measure of similarity between graph vertices: applications to synonym extraction and web searching;Blondel;SIAM Rev.,2004

4. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type;Boldog;Nat. Neurosci.,2018

5. Actually, what does “ontology” mean?: A term coined by philosophy in the light of different scientific disciplines;Busse;J. Comp. Inform. Technol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3