Single-Cell Transcriptomics Uncover Key Regulators of Skin Regeneration in Human Long-Term Mechanical Stretch-Mediated Expansion Therapy

Author:

Sun Yidan,Xu Luwen,Li Yin,Lin Jian,Li Haizhou,Gao Yashan,Huang Xiaolu,Zhu Hainan,Zhang Yingfan,Wei Kunchen,Yang Yali,Wu Baojin,Zhang Liang,Li Qingfeng,Liu Caiyue

Abstract

Tissue expansion is a commonly performed therapy to grow extra skin invivo for reconstruction. While mechanical stretch-induced epidermal changes have been extensively studied in rodents and cell culture, little is known about the mechanobiology of the human epidermis in vivo. Here, we employed single-cell RNA sequencing to interrogate the changes in the human epidermis during long-term tissue expansion therapy in clinical settings. We also verified the main findings at the protein level by immunofluorescence analysis of independent clinical samples. Our data show that the expanding human skin epidermis maintained a cellular composition and lineage trajectory that are similar to its non-expanding neighbor, suggesting the cellular heterogeneity of long-term expanded samples differs from the early response to the expansion. Also, a decrease in proliferative cells due to the decayed regenerative competency was detected. On the other hand, profound transcriptional changes are detected for epidermal stem cells in the expanding skin versus their non-expanding peers. These include significantly enriched signatures of C-FOS, EMT, and mTOR pathways and upregulation of AREG and SERPINB2 genes. CellChat associated ligand-receptor pairs and signaling pathways were revealed. Together, our data present a single-cell atlas of human epidermal changes in long-term tissue expansion therapy, suggesting that transcriptional change in epidermal stem cells is the major mechanism underlying long-term human skin expansion therapy. We also identified novel therapeutic targets to promote human skin expansion efficiency in the future.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3