Relationships between quantitative retinal microvascular characteristics and cognitive function based on automated artificial intelligence measurements

Author:

Shi Xu Han,Dong Li,Zhang Rui Heng,Zhou Deng Ji,Ling Sai Guang,Shao Lei,Yan Yan Ni,Wang Ya Xing,Wei Wen Bin

Abstract

Introduction: The purpose of this study is to assess the relationship between retinal vascular characteristics and cognitive function using artificial intelligence techniques to obtain fully automated quantitative measurements of retinal vascular morphological parameters.Methods: A deep learning-based semantic segmentation network ResNet101-UNet was used to construct a vascular segmentation model for fully automated quantitative measurement of retinal vascular parameters on fundus photographs. Retinal photographs centered on the optic disc of 3107 participants (aged 50–93 years) from the Beijing Eye Study 2011, a population-based cross-sectional study, were analyzed. The main parameters included the retinal vascular branching angle, vascular fractal dimension, vascular diameter, vascular tortuosity, and vascular density. Cognitive function was assessed using the Mini-Mental State Examination (MMSE).Results: The results showed that the mean MMSE score was 26.34 ± 3.64 (median: 27; range: 2–30). Among the participants, 414 (13.3%) were classified as having cognitive impairment (MMSE score < 24), 296 (9.5%) were classified as mild cognitive impairment (MMSE: 19–23), 98 (3.2%) were classified as moderate cognitive impairment (MMSE: 10–18), and 20 (0.6%) were classified as severe cognitive impairment (MMSE < 10). Compared with the normal cognitive function group, the retinal venular average diameter was significantly larger (p = 0.013), and the retinal vascular fractal dimension and vascular density were significantly smaller (both p < 0.001) in the mild cognitive impairment group. The retinal arteriole-to-venular ratio (p = 0.003) and vascular fractal dimension (p = 0.033) were significantly decreased in the severe cognitive impairment group compared to the mild cognitive impairment group. In the multivariate analysis, better cognition (i.e., higher MMSE score) was significantly associated with higher retinal vascular fractal dimension (b = 0.134, p = 0.043) and higher retinal vascular density (b = 0.152, p = 0.023) after adjustment for age, best corrected visual acuity (BCVA) (logMAR) and education level.Discussion: In conclusion, our findings derived from an artificial intelligence-based fully automated retinal vascular parameter measurement method showed that several retinal vascular morphological parameters were correlated with cognitive impairment. The decrease in retinal vascular fractal dimension and decreased vascular density may serve as candidate biomarkers for early identification of cognitive impairment. The observed reduction in the retinal arteriole-to-venular ratio occurs in the late stages of cognitive impairment.

Funder

National Natural Science Foundation of China Capital Health Research and Development of Special Fund

Beijing Municipal Science and Technology Commission

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference58 articles.

1. Alzheimer's disease facts and figures;Alzheimer’s Association;Alzheimer's Dementia J. Alzheimer's Assoc.,2022

2. Using retinal imaging to study dementia;Chan;J. Vis. Exp. JoVE,2017

3. Retinal vessel segmentation using deep learning: A review;Chen;IEEE Access,2021

4. Retinal imaging in Alzheimer's disease;Cheung;J. Neurology, Neurosurg. Psychiatry

5. Quantitative and qualitative retinal microvascular characteristics and blood pressure;Cheung;J. Hypertens.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3