The integrated stress response protects against ER stress but is not required for altered translation and lifespan from dietary restriction in Caenorhabditis elegans

Author:

Ma Zhengxin,Horrocks Jordan,Mir Dilawar A.,Cox Matthew,Ruzga Marissa,Rollins Jarod,Rogers Aric N.

Abstract

The highly conserved integrated stress response (ISR) reduces and redirects mRNA translation in response to certain forms of stress and nutrient limitation. It is activated when kinases phosphorylate a key residue in the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). General Control Nonderepressible-2 (GCN2) is activated to phosphorylate eIF2α by the presence of uncharged tRNA associated with nutrient scarcity, while protein kinase R-like ER kinase-1 (PERK) is activated during the ER unfolded protein response (UPRER). Here, we investigated the role of the ISR during nutrient limitation and ER stress with respect to changes in protein synthesis, translationally driven mRNA turnover, and survival in Caenorhabditis elegans. We found that, while GCN2 phosphorylates eIF2α when nutrients are restricted, the ability to phosphorylate eIF2α is not required for changes in translation, nonsense-mediated decay, or lifespan associated with dietary restriction (DR). Interestingly, loss of both GCN2 and PERK abolishes increased lifespan associated with dietary restriction, indicating the possibility of other substrates for these kinases. The ISR was not dispensable under ER stress conditions, as demonstrated by the requirement for PERK and eIF2α phosphorylation for decreased translation and wild type-like survival. Taken together, results indicate that the ISR is critical for ER stress and that other translation regulatory mechanisms are sufficient for increased lifespan under dietary restriction.

Funder

National Institutes of Health

Mount Desert Island Biological Laboratory

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3