pSuc-FFSEA: Predicting Lysine Succinylation Sites in Proteins Based on Feature Fusion and Stacking Ensemble Algorithm

Author:

Jia Jianhua,Wu Genqiang,Qiu Wangren

Abstract

Being a new type of widespread protein post-translational modifications discovered in recent years, succinylation plays a key role in protein conformational regulation and cellular function regulation. Numerous studies have shown that succinylation modifications are closely associated with the development of many diseases. In order to gain insight into the mechanism of succinylation, it is vital to identify lysine succinylation sites. However, experimental identification of succinylation sites is time-consuming and laborious, and traditional identification tools are unable to meet the rapid growth of datasets. Therefore, to solve this problem, we developed a new predictor named pSuc-FFSEA, which can predict succinylation sites in protein sequences by feature fusion and stacking ensemble algorithm. Specifically, the sequence information and physicochemical properties were first extracted using EBGW, One-Hot, continuous bag-of-words, chaos game representation, and AAF_DWT. Following that, feature selection was performed, which applied LASSO to select the optimal subset of features for the classifier, and then, stacking ensemble classifier was designed using two-layer stacking ensemble, selecting three classifiers, SVM, broad learning system and LightGBM classifier, as the base classifiers of the first layer, using logistic regression classifier as the meta classifier of the second layer. In order to further improve the model prediction accuracy and reduce the computational effort, bayesian optimization algorithm and grid search algorithm were utilized to optimize the hyperparameters of the classifier. Finally, the results of rigorous 10-fold cross-validation indicated our predictor showed excellent robustness and performed better than the previous prediction tools, which achieved an average prediction accuracy of 0.7773 ± 0.0120. Besides, for the convenience of the most experimental scientists, a user-friendly and comprehensive web-server for pSuc-FFSEA has been established at https://bio.cangmang.xyz/pSuc-FFSEA, by which one can easily obtain the expected data and results without going through the complicated mathematics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3