miR-335 Targets LRRK2 and Mitigates Inflammation in Parkinson’s Disease

Author:

Oliveira Sara R.,Dionísio Pedro A.,Gaspar Maria M.,Correia Guedes Leonor,Coelho Miguel,Rosa Mário M.,Ferreira Joaquim J.,Amaral Joana D.,Rodrigues Cecília M. P.

Abstract

Parkinson’s disease (PD) is mainly driven by dopaminergic neuronal degeneration in the substantia nigra pars compacta accompanied by chronic neuroinflammation. Despite being mainly sporadic, approximately 10% of all cases are defined as heritable forms of PD, with mutations in the leucine-rich repeat kinase (LRRK2) gene being the most frequent known cause of familial PD. MicroRNAs (miRNAs or miRs), including miR-335, are frequently deregulated in neurodegenerative diseases, such as PD. Here, we aimed to dissect the protective role of miR-335 during inflammation and/or neurodegenerative events in experimental models of PD. Our results showed that miR-335 is significantly downregulated in different PD-mimicking conditions, including BV2 microglia cells stimulated with lipopolysaccharide (LPS) and/or overexpressing wild-type LRRK2. Importantly, these results were confirmed in serum of mice injected with 1-methyl-1-4-phenyl-1,2,3,6-tetrahydripyridine hydrochloride (MPTP), and further validated in patients with idiopathic PD (iPD) and those harboring mutations in LRRK2 (LRRK2-PD), thus corroborating potential clinical relevance. Mechanistically, miR-335 directly targeted LRRK2 mRNA. In the BV2 and N9 microglia cell lines, miR-335 strongly counteracted LPS-induced proinflammatory gene expression, and downregulated receptor interacting protein 1 (RIP1) and RIP3, two important players of necroptotic and inflammatory signaling pathways. Further, miR-335 inhibited LPS-mediated ERK1/2 activation. LRRK2-Wt-induced proinflammatory gene expression was also significantly reduced by miR-335 overexpression. Finally, in SH-SY5Y neuroblastoma cells, miR-335 decreased the expression of pro-inflammatory genes triggered by α-synuclein. In conclusion, we revealed novel roles for miR-335 in both microglia and neuronal cells that strongly halt the effects of classical inflammatory stimuli or LRRK2-Wt overexpression, thus attenuating chronic neuroinflammation.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3