Vitamin D Promotes Trophoblast Cell Induced Separation of Vascular Smooth Muscle Cells in Vascular Remodeling via Induction of G-CSF

Author:

Zhang Joy Yue,Wu Peihuang,Chen Danyang,Ning Fen,Lu Qinsheng,Qiu Xiu,Hewison Martin,Tamblyn Jennifer A.,Kilby Mark D.,Lash Gendie E.

Abstract

Vitamin D deficiency is associated with complications of pregnancy such as pre-eclampsia, fetal growth restriction, and miscarriage, all of which are also associated with incomplete spiral artery (SpA) remodeling. We have previously shown that both uterine natural killer (uNK) cells and extravillous trophoblast cells (EVT) are required for successful SpA remodeling, but whether their activity in this process is modulated by vitamin D is not known. In the current study, we use a previously described chorionic plate artery (CPA) ex vivo model of vascular remodeling to determine the effects of 1,25(OH)2D treated uNK cell, placental explant (PEx), and uNK/PEx conditioned medium (CM) on vascular smooth muscle cell (VSMC) disorganization and phenotypic switching. Significant results were followed up in VSMCs in vitro. We demonstrate that 1,25(OH)2D can enhance the ability of PEx to induce SpA remodeling, via a mechanism associated with increased secretion of granulocyte-colony stimulating factor (G-CSF). G-CSF appears able to increase VSMC disorganization and phenotypic switching in both an ex vivo vascular model and in vitro VSMC cultures. The clinical relevance of these findings are still to be determined. G-CSF may have differential effects depending on dose and vascular bed, and vitamin D may play a role in potentiating these actions. G-CSF may be an interesting potential therapeutic target for facilitating physiological vascular remodeling for the prevention of adverse obstetric outcomes.

Funder

Guangzhou Municipal Science and Technology Project

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3