Heparanase contributes to pancreatic carcinoma progression through insulin-dependent glucose uptake

Author:

Abecassis Alexia,Hermano Esther,Yifrach Adi,Popovtzer Aron,Meirovitz Amichay,Elkin Michael

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor, which is highly resistant to existing therapies and characterized by one of the lowest survival rates known for solid cancers. Among the reasons for this poor prognosis are unique pathophysiological features of PDAC, such as dense extracellular matrix [ECM] creating barriers to drug delivery, as well as systemically-deregulated glucose metabolism manifested by diabetic conditions (i.e., hyperinsulinemia/hyperglycemia) occurring in the majority of PDAC patients. Moreover, in addition to systemically deregulated glucose homeostasis, intracellular metabolic pathways in PDAC are rewired toward increased glucose uptake/anabolic metabolism by the tumor cells. While the role of oncogene-driven programs in governing these processes is actively studied, mechanisms linking metabolic dysregulation and ECM enzymatic remodeling to PDAC progression/therapy resistance are less appreciated. The aim of the current study was to investigate the action of heparanase (the predominant mammalian enzyme that degrades heparan sulfate glycosaminoglycan in the ECM), as a molecular link between the diabetic state and the intracellular metabolic rewiring in PDAC pathogenesis. Here we show that in PDAC elevated levels of heparanase, coupled with diabetic conditions typical for PDAC patients, promote growth and chemotherapy resistance of pancreatic carcinoma by favoring insulin receptor signaling and GLUT4-mediated glucose uptake into tumor cells. Collectively, our findings underscore previously unknown mechanism through which heparanase acts at the interface of systemic and intracellular metabolic alterations in PDAC and attest the enzyme as an important and potentially modifiable contributor to the chemo-resistance of pancreatic tumors.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3