Using Cell Type–Specific Genes to Identify Cell-Type Transitions Between Different in vitro Culture Conditions

Author:

He Xuelin,Liu Li,Chen Baode,Wu Chao

Abstract

In vitro differentiation or expansion of stem and progenitor cells under chemical stimulation or genetic manipulation is used for understanding the molecular mechanisms of cell differentiation and self-renewal. However, concerns around the cell identity of in vitro–cultured cells exist. Bioinformatics methods, which rely heavily on signatures of cell types, have been developed to estimate cell types in bulk samples. The Tabula Muris Senis project provides an important basis for the comprehensive identification of signatures for different cell types. Here, we identified 46 cell type–specific (CTS) gene clusters for 83 mouse cell types. We conducted Gene Ontology term enrichment analysis on the gene clusters and revealed the specific functions of the relevant cell types. Next, we proposed a simple method, named CTSFinder, to identify different cell types between bulk RNA-Seq samples using the 46 CTS gene clusters. We applied CTSFinder on bulk RNA-Seq data from 17 organs and from developing mouse liver over different stages. We successfully identified the specific cell types between organs and captured the dynamics of different cell types during liver development. We applied CTSFinder with bulk RNA-Seq data from a growth factor–induced neural progenitor cell culture system and identified the dynamics of brain immune cells and nonimmune cells during the long-time cell culture. We also applied CTSFinder with bulk RNA-Seq data from reprogramming induced pluripotent stem cells and identified the stage when those cells were massively induced. Finally, we applied CTSFinder with bulk RNA-Seq data from in vivo and in vitro developing mouse retina and captured the dynamics of different cell types in the two development systems. The CTS gene clusters and CTSFinder method could thus serve as promising toolkits for assessing the cell identity of in vitro culture systems.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SCInter: A comprehensive single-cell transcriptome integration database for human and mouse;Computational and Structural Biotechnology Journal;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3