Deciphering the Intercellular Communication Network of Peripartum Decidua that Orchestrates Delivery

Author:

Huang Jingrui,Zhang Weishe,Zhao Yanhua,Li Jingzhi,Xie Mingkun,Lu Yang,Peng Qiaozhen,Zhang Jiejie,Li Ping,Dai Lei

Abstract

Intercellular communication in the decidua plays important roles in relaying information between the maternal and fetal systems in the maintenance of pregnancy and the transition to labor. To date, several studies have explored cell-cell communications in the decidua during different periods of pregnancy, but studies systematically decoding the intercellular communication network, its internal cascades, and their involvement in labor are still lacking. In this study, we reconstructed a decidual cell-cell communication network based on scRNA-seq of peripartum decidua via the CellCall method. The results showed that endometrial cells (EECs) and extravillous trophoblasts relayed most of the common intercellular signals in the decidua both before delivery (DBD) and after delivery (DAD). Endothelial cells and EECs controlled many WNT-signaling-related intercellular communication factors that differed between DBD and DAD, some of which could be candidate biomarkers for the diagnosis of labor. Analysis of intercellular communications related to T cells identified abundant maternal-fetal immune-tolerance-related communication, such as TNFSF14-TNFRSF14/LTBR and FASLG-FAS signalings. We further explored the characteristics of the B cell receptor (BCR) and T cell receptor (TCR) repertoires by single-cell BCR/TCR sequencing. The results showed no significant differences in clonal expansion of B/T cells between DAD and DBD, indicating there was no significant change to adaptive immunity at the maternal-fetal interface during delivery. In summary, the findings provide a comprehensive view of the intercellular communication landscape in the peripartum decidua and identified some key intercellular communications involved in labor and maternal-fetal immune tolerance. We believe that our study provides valuable clues for understanding the mechanisms of pregnancy and provides possible diagnostic strategies for the onset of labor.

Funder

National Natural Science Foundation of China

Science and Technology Program of Hunan Province

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3