Attention-guided cascaded network with pixel-importance-balance loss for retinal vessel segmentation

Author:

Su Hexing,Gao Le,Lu Yichao,Jing Han,Hong Jin,Huang Li,Chen Zequn

Abstract

Accurate retinal vessel segmentation from fundus images is essential for eye disease diagnosis. Many deep learning methods have shown great performance in this task but still struggle with limited annotated data. To alleviate this issue, we propose an Attention-Guided Cascaded Network (AGC-Net) that learns more valuable vessel features from a few fundus images. Attention-guided cascaded network consists of two stages: the coarse stage produces a rough vessel prediction map from the fundus image, and the fine stage refines the missing vessel details from this map. In attention-guided cascaded network, we incorporate an inter-stage attention module (ISAM) to cascade the backbone of these two stages, which helps the fine stage focus on vessel regions for better refinement. We also propose Pixel-Importance-Balance Loss (PIB Loss) to train the model, which avoids gradient domination by non-vascular pixels during backpropagation. We evaluate our methods on two mainstream fundus image datasets (i.e., DRIVE and CHASE-DB1) and achieve AUCs of 0.9882 and 0.9914, respectively. Experimental results show that our method outperforms other state-of-the-art methods in performance.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference47 articles.

1. Recurrent residual U-Net for medical image segmentation;Alom;J. Med. Imaging,2019

2. The value of fundoscopy in general practice;Chatziralli;open Ophthalmol. J.,2012

3. Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters;Chutatape,1998

4. An approach to localize the retinal blood vessels using bit planes and centerline detection;Fraz;Comput. methods programs Biomed.,2012

5. An ensemble classification-based approach applied to retinal blood vessel segmentation;Fraz;IEEE Trans. Biomed. Eng.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3