Recognizing Pattern and Rule of Mutation Signatures Corresponding to Cancer Types

Author:

Chen Lei,Zhou Xianchao,Zeng Tao,Pan Xiaoyong,Zhang Yu-Hang,Huang Tao,Fang Zhaoyuan,Cai Yu-Dong

Abstract

Cancer has been generally defined as a cluster of systematic malignant pathogenesis involving abnormal cell growth. Genetic mutations derived from environmental factors and inherited genetics trigger the initiation and progression of cancers. Although several well-known factors affect cancer, mutation features and rules that affect cancers are relatively unknown due to limited related studies. In this study, a computational investigation on mutation profiles of cancer samples in 27 types was given. These profiles were first analyzed by the Monte Carlo Feature Selection (MCFS) method. A feature list was thus obtained. Then, the incremental feature selection (IFS) method adopted such list to extract essential mutation features related to 27 cancer types, find out 207 mutation rules and construct efficient classifiers. The top 37 mutation features corresponding to different cancer types were discussed. All the qualitatively analyzed gene mutation features contribute to the distinction of different types of cancers, and most of such mutation rules are supported by recent literature. Therefore, our computational investigation could identify potential biomarkers and prediction rules for cancers in the mutation signature level.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference74 articles.

1. Signatures of mutational processes in human cancer.;Alexandrov;Nature,2013

2. Cancer is a preventable disease that requires major lifestyle changes.;Anand;Pharm. Res.,2008

3. Association of SNPs/haplotypes in promoter of TNF A and IL-10 gene together with life style factors in prostate cancer progression in Indian population.;Bandil;Inflamm. Res.,2017

4. The incidence of p53 mutations increases with progression of head and neck cancer.;Boyle;Cancer Res.,1993

5. Random forests.;Breiman;Mach. Learn.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3