Author:
Hao Xin,Zhao Yi-Tong,Ding Kang,Xue Fang-Rui,Wang Xin-Yu,Yang Qi,Han Zhe,Liang Cheng-Guang
Abstract
For in vitro produced embryos generated from in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) procedure, the intra- and extra-environmental factors during in vitro culture have significant impact on latter embryo development and fetus growth. Assisted hatching (AH), an effective approach to facilitate hatchability for in vitro generated embryos, is an essential step for successful embryo implantation in the uterus. However, regarding the different AH methods reported in clinical practice, it is still unknown whether zona pellucida (ZP) broken is based on AH applied in diverse stages of embryos affect implantation and fetal development. Here, piezo-mediated AH treatments were classified into four categories: (1) drilling one small hole (SH) with a diameter of 10 μm on ZP (SH); (2) drilling one large hole (LH) with a diameter of 40 μm on ZP (LH); (3) made a small area with diameter of 40-μm thinner on ZP [small area thinner (ST)]; (4) made a large area with a diameter of 80-μm thinner [large area thinner (LT)]. These four AH treatments were applied in different stage embryos including two-cell, four-cell, and morula. The most efficient AH approach was chosen according to the final hatch rate at 120 h after fertilization. We found that the approach of SH applied in morula-stage embryos obtained the highest hatch rate. To further investigate if this treatment has any side effect on later development after embryo transfer, we evaluated embryo implantation, gestational period, litter size, and growth. Our results showed that SH applied in morula-stage embryos could facilitate the implantation process and increase litter size. Meanwhile, this approach had no side effect on birth weight, growth, or gender ratio in the offspring. We conclude that drilling a SH on ZP in morula-stage embryos is an effective and reliable AH approach for in vitro cultured embryos in rodent. And this approach is worth further investigating in human-assisted reproductive technology.
Subject
Cell Biology,Developmental Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献