The modulation of potassium channels by estrogens facilitates neuroprotection

Author:

Li Xian-Tao

Abstract

Estrogens, the sex hormones, have the potential to govern multiple cellular functions, such as proliferation, apoptosis, differentiation, and homeostasis, and to exert numerous beneficial influences for the cardiovascular system, nervous system, and bones in genomic and/or non-genomic ways. Converging evidence indicates that estrogens serve a crucial role in counteracting neurodegeneration and ischemic injury; they are thereby being considered as a potent neuroprotectant for preventing neurological diseases such as Alzheimer’s disease and stroke. The underlying mechanism of neuroprotective effects conferred by estrogens is thought to be complex and multifactorial, and it remains obscure. It is well established that the K+ channels broadly expressed in a variety of neural subtypes determine the essential physiological features of neuronal excitability, and dysfunction of these channels is closely associated with diverse brain deficits, such as ataxia and epilepsy. A growing body of evidence supports a neuroprotective role of K+ channels in malfunctions of nervous tissues, with the channels even being a therapeutic target in clinical trials. As multitarget steroid hormones, estrogens also regulate the activity of distinct K+ channels to generate varying biological actions, and accumulated data delineate that some aspects of estrogen-mediated neuroprotection may arise from the impact on multiple K+ channels, including Kv, BK, KATP, and K2P channels. The response of these K+ channels after acute or chronic exposure to estrogens may oppose pathological abnormality in nervous cells, which serves to extend our understanding of these phenomena.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3