Insights on the Control of Yeast Single-Cell Growth Variability by Members of the Trehalose Phosphate Synthase (TPS) Complex

Author:

Arabaciyan Sevan,Saint-Antoine Michael,Maugis-Rabusseau Cathy,François Jean-Marie,Singh Abhyudai,Parrou Jean-Luc,Capp Jean-Pascal

Abstract

Single-cell variability of growth is a biological phenomenon that has attracted growing interest in recent years. Important progress has been made in the knowledge of the origin of cell-to-cell heterogeneity of growth, especially in microbial cells. To better understand the origins of such heterogeneity at the single-cell level, we developed a new methodological pipeline that coupled cytometry-based cell sorting with automatized microscopy and image analysis to score the growth rate of thousands of single cells. This allowed investigating the influence of the initial amount of proteins of interest on the subsequent growth of the microcolony. As a preliminary step to validate this experimental setup, we referred to previous findings in yeast where the expression level of Tsl1, a member of the Trehalose Phosphate Synthase (TPS) complex, negatively correlated with cell division rate. We unfortunately could not find any influence of the initial TSL1 expression level on the growth rate of the microcolonies. We also analyzed the effect of the natural variations of trehalose-6-phosphate synthase (TPS1) expression on cell-to-cell growth heterogeneity, but we did not find any correlation. However, due to the already known altered growth of the tps1Δ mutants, we tested this strain at the single-cell level on a permissive carbon source. This mutant showed an outstanding lack of reproducibility of growth rate distributions as compared to the wild-type strain, with variable proportions of non-growing cells between cultivations and more heterogeneous microcolonies in terms of individual growth rates. Interestingly, this variable behavior at the single-cell level was reminiscent to the high variability that is also stochastically suffered at the population level when cultivating this tps1Δ strain, even when using controlled bioreactors.

Funder

Institut National de la Recherche Agronomique

Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3