Author:
Savelyev Nikita V.,Shepelev Nikita M.,Lavrik Olga I.,Rubtsova Maria P.,Dontsova Olga A.
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is established as a key regulator of the cellular DNA damage response and apoptosis. In addition, PARP1 participates in the global regulation of DNA repair, transcription, telomere maintenance, and inflammation response by modulating various DNA-protein and protein-protein interactions. Recently, it was reported that PARP1 also influences splicing and ribosomal RNA biogenesis. The H/ACA ribonucleoprotein complex is involved in a variety of cellular processes such as RNA maturation. It contains non-coding RNAs with specific H/ACA domains and four proteins: dyskerin (DKC1), GAR1, NHP2, and NOP10. Two of these proteins, DKC1 and GAR1, are targets of poly(ADP-ribosyl)ation catalyzed by PARP1. The H/ACA RNA-binding proteins are involved in the regulation of maturation and activity of the telomerase complex, which maintains telomere length. In this study, we demonstrated that of poly(ADP-ribosyl)ation influences on RNA-binding properties of DKC1 and GAR1 and telomerase assembly and activity. Our data provide the evidence that poly(ADP-ribosyl)ation regulates telomerase complex assembly and activity, in turn regulating telomere length that may be useful for design and development of anticancer therapeutic approaches that are based on the inhibition of PARP1 and telomerase activities.
Funder
Russian Foundation for Basic Research
Russian Science Foundation
Subject
Cell Biology,Developmental Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献