Retinal fluid is associated with cytokines of aqueous humor in age-related macular degeneration using automatic 3-dimensional quantification

Author:

Song Siyuan,Jin Kai,Wang Shuai,Yang Ce,Zhou Jingxin,Chen Zhiqing,Ye Juan

Abstract

Background: To explain the biological role of cytokines in the eye and the possible role of cytokines in the pathogenesis of neovascular age-related macular degeneration (nAMD) by comparing the correlation between cytokine of aqueous humor concentration and optical coherence tomography (OCT) retinal fluid.Methods: Spectral-domain OCT (SD-OCT) images and aqueous humor samples were collected from 20 nAMD patient’s three clinical visits. Retinal fluid volume in OCT was automatically quantified using deep learning--Deeplabv3+. Eighteen cytokines were detected in aqueous humor using the Luminex technology. OCT fluid volume measurements were correlated with changes in aqueous humor cytokine levels using Pearson’s correlation coefficient (PCC).Results: The patients with intraretinal fluid (IRF) showed significantly lower levels of cytokines, such as C-X-C motif chemokine ligand 2 (CXCL2) (p = 0.03) and CXCL11 (p = 0.009), compared with the patients without IRF. And the IRF volume was negatively correlated with CXCL2 (r = −0.407, p = 0.048) and CXCL11 (r = −0.410, p = 0.046) concentration in the patients with IRF. Meanwhile, the subretinal fluid (SRF) volume was positively correlated with vascular endothelial growth factor (VEGF) concentration (r = 0.299, p = 0.027) and negatively correlated with interleukin (IL)-36β concentration (r = −0.295, p = 0.029) in the patients with SRF.Conclusion: Decreased level of VEGF was associated with decreased OCT-based retinal fluid volume in nAMD patients, while increased levels of CXCL2, CXCL11, and IL-36β were associated with decreased OCT-based retinal fluid volume in nAMD patients, which may suggest a role for inflammatory cytokines in retinal morphological changes and pathogenesis of nAMD patients.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3