Epigenetic Control of Muscle Stem Cells: Focus on Histone Lysine Demethylases

Author:

Cicciarello Delia,Schaeffer Laurent,Scionti Isabella

Abstract

Adult skeletal muscle is mainly composed of post-mitotic, multinucleated muscle fibers. Upon injury, it has the unique ability to regenerate thanks to the activation of a subset of quiescent muscle stem cells (MuSCs). Activated MuSCs either differentiate to repair muscle, or self-renew to maintain the pool of MuSC. MuSC fate determination is regulated by an intricate network of intrinsic and extrinsic factors that control the expression of specific subsets of genes. Among these, the myogenic regulatory factors (MRFs) are key for muscle development, cell identity and regeneration. More globally, cell fate determination involves important changes in the epigenetic landscape of the genome. Such epigenetic changes, which include DNA methylation and post-translational modifications of histone proteins, are able to alter chromatin organization by controlling the accessibility of specific gene loci for the transcriptional machinery. Among the numerous epigenetic modifications of chromatin, extensive studies have pointed out the key role of histone methylation in cell fate control. Particularly, since the discovery of the first histone demethylase in 2004, the role of histone demethylation in the regulation of skeletal muscle differentiation and muscle stem cell fate has emerged to be essential. In this review, we highlight the current knowledge regarding the role of histone demethylases in the regulation of muscle stem cell fate choice.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epigenetic control of skeletal muscle atrophy;Cellular & Molecular Biology Letters;2024-07-08

2. Satellite cell contribution to disease pathology in Duchenne muscular dystrophy;Frontiers in Physiology;2023-05-30

3. A regenerative niche for stem cells;Science;2022-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3