Osteocytes Enhance Osteogenesis by Autophagy-Mediated FGF23 Secretion Under Mechanical Tension

Author:

Xu Huiyue,Xia Meng,Sun Lian,Wang Hua,Zhang Wei-Bing

Abstract

Mechanical stimuli control cell behaviors that are crucial for bone tissue repair. Osteocytes sense extracellular mechanical stimuli then convert them into biochemical signals to harmonize bone remodeling. However, the mechanisms underlying this process remain unclear. Autophagy, which is an evolutionarily preserved process, that occurs at a basal level when stimulated by multiple environmental stresses. We postulated that mechanical stimulation upregulates osteocyte autophagy via AMPK-associated signaling, driving osteocyte-mediated osteogenesis. Using a murine model of orthodontic tooth movement, we show that osteocyte autophagy is triggered by mechanical tension, increasing the quantity of LC3B-positive osteocytes by 4-fold in the tension side. Both in vitro mechanical tension as well as the chemical autophagy agonist enhanced osteocyte Fibroblast growth factor 23 (FGF23) secretion, which is an osteogenenic related cytokine, by 2-and 3-fold, respectively. Conditioned media collected from tensioned osteocytes enhanced osteoblast viability. These results indicate that mechanical tension drives autophagy-mediated FGF23 secretion from osteocytes and promotes osteogenesis. Our findings highlight a potential strategy for accelerating osteogenesis in orthodontic clinical settings.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3