Identification of Potential Antigens for Developing mRNA Vaccine for Immunologically Cold Mesothelioma

Author:

Zhang Shichao,Li Shuqin,Wei Ya,Xiong Yu,Liu Qin,Hu Zuquan,Zeng Zhu,Tang Fuzhou,Ouyang Yan

Abstract

Messenger RNA vaccines are considered to be a promising strategy in cancer immunotherapy, while their application on mesothelioma is still largely uncharacterized. This study aimed to identify potential antigens in mesothelioma for anti-mesothelioma mRNA vaccine development, and further determine the immune subtypes of mesothelioma for selection of suitable candidates from an extremely heterogeneous population. Gene expression data and corresponding clinicopathological information were obtained from the TCGA and gene expression omnibus, respectively. Then, the genetic alterations were compared and visualized using cBioPortal, and differentially expressed genes and their prognostic signatures were identified by GEPIA. The relationship between tumor-infiltrating immune cells and the expression of tumor antigens was systematically evaluated by TIMER online. Finally, the immune subtypes and immune landscape of mesothelioma were separately analyzed using consensus cluster and graph learning-based dimensional reduction. A total of five potential tumor antigens correlated with prognosis and infiltration of antigen-presenting cells, including AUNIP, FANCI, LASP1, PSMD8, and XPO5 were identified. Based on the expression of immune-related genes, patients with mesothelioma were divided into two immune subtypes (IS1 and IS2). Each subtype exhibited differential molecular, cellular and clinical properties. Patients with the IS1 subtype were characterized by an immune “cold” phenotype, displaying superior survival outcomes, whereas those with the IS2 subtype were characterized by an immune “hot” and immunosuppressive phenotype. Furthermore, immune checkpoints and immunogenic cell death modulators were differentially expressed between the IS1 and IS2 immune subtype tumors. The immunogenomic landscape of mesothelioma revealed a complex tumor immune microenvironment between individual patients. AUNIP, FANCI, LASP1, PSMD8, and XPO5 are putative antigens for the development of anti-mesothelioma mRNA vaccine and patients with the IS1 subtype may be considered for vaccination.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3