Specificity of Nuclear Size Scaling in Frog Erythrocytes

Author:

Niide Tetsufumi,Asari Saki,Kawabata Kosuke,Hara Yuki

Abstract

In eukaryotes, the cell has the ability to modulate the size of the nucleus depending on the surrounding environment, to enable nuclear functions such as DNA replication and transcription. From previous analyses of nuclear size scaling in various cell types and species, it has been found that eukaryotic cells have a conserved scaling rule, in which the nuclear size correlates with both cell size and genomic content. However, there are few studies that have focused on a certain cell type and systematically analyzed the size scaling properties in individual species (intra-species) and among species (inter-species), and thus, the difference in the scaling rules among cell types and species is not well understood. In the present study, we analyzed the size scaling relationship among three parameters, nuclear size, cell size, and genomic content, in our measured datasets of terminally differentiated erythrocytes of five Anura frogs and collected datasets of different species classes from published papers. In the datasets of isolated erythrocytes from individual frogs, we found a very weak correlation between the measured nuclear and cell cross-sectional areas. Within the erythrocytes of individual species, the correlation of the nuclear area with the cell area showed a very low hypoallometric relationship, in which the relative nuclear size decreased when the cell size increased. These scaling trends in intra-species erythrocytes are not comparable to the known general correlation in other cell types. When comparing parameters across species, the nuclear areas correlated with both cell areas and genomic contents among the five frogs and the collected datasets in each species class. However, the contribution of genomic content to nuclear size determination was smaller than that of the cell area in all species classes. In particular, the estimated degree of the contribution of genomic content was greater in the amphibian class than in other classes. Together with our imaging analysis of structural components in nuclear membranes, we hypothesized that the observed specific features in nuclear size scaling are achieved by the weak interaction of the chromatin with the nuclear membrane seen in frog erythrocytes.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference59 articles.

1. Importin α Partitioning to the Plasma Membrane Regulates Intracellular Scaling;Brownlee;Cell,2019

2. 3-D Structure, Volume, and DNA Content of Erythrocyte Nuclei of Polyploid Fish;Bytyutskyy;Cell Biol. Int.,2014

3. Cell Volume and the Evolution of Genome Size;Cavalier-Smith,1985

4. Volume Transitions of Isolated Cell Nuclei Induced by Rapid Temperature Increase;Chan;Biophysical J.,2017

5. Cell Size and Nuclear Size;Conklin;J. Exp. Zool.,1912

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physical forces modulate interphase nuclear size;Current Opinion in Cell Biology;2023-12

2. Differential contribution of nuclear size scaling mechanisms between Xenopus species;Development, Growth & Differentiation;2022-11-05

3. Nuclear size rectification: A potential new therapeutic approach to reduce metastasis in cancer;Frontiers in Cell and Developmental Biology;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3