SEC5 is involved in M2 polarization of macrophages via the STAT6 pathway, and its dysfunction in decidual macrophages is associated with recurrent spontaneous abortion

Author:

Yang Long,Zhang Xuan,Gu Yan,Shi Yan,Wang Long-Bin,Shi Jia-Xin,Zhen Xing-Xing,Xin Ya-Wei,Gu Wen-Wen,Wang Jian

Abstract

Decidual macrophages (dMϕs) play critical roles in the establishment of microhomeostasis at the maternal-fetal interface during pregnancy. Impaired macrophage polarization during early pregnancy is associated with recurrent spontaneous abortion (RSA). In the present study, the SEC5 expression level was found to be significantly decreased in primary dMϕs of patients with RSA, and downregulation of SEC5 expression inhibited M2 polarization and STAT6 phosphorylation, whereas SEC5 overexpression in the Mϕs promoted M2 polarization and STAT6 phosphorylation in vitro. We subsequently found that SEC5 interacted with STAT6 in THP-1-derived Mϕs. The abundance of phosphorylated STAT6 (pSTAT6) protein was obviously increased, with a predominant distribution in the nucleus, after M2 polarization of Mϕs, and SEC5 protein was colocalized with pSTAT6. Moreover, a significantly reduced pSTAT6 expression level was observed in the dMϕs of patients with RSA. M2 polarization of Mϕs showed a stimulatory effect on the proliferation and invasion of human extravillous trophoblasts (EVTs) in vitro, and downregulation of SEC5 expression in Mϕs effectively reversed this effect. In a mouse model of LPS-induced early pregnancy loss, the uterine SEC5 expression level and the number of M2-Mϕs at the maternal-fetal interface were significantly reduced. More interestingly, heterozygous SEC5-deficient (SEC5−/+) pregnant mice were more sensitive to LPS-induced pregnancy loss. Taken together, these data indicate that SEC5 participates in the regulation of M2 polarization of Mϕs by interacting with STAT6 and that decreased SEC5 expression inhibits the M2 polarization of dMϕs and results in early pregnancy loss by interfering with the physical activities of EVTs and immunotolerance at the maternal-fetal interface.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3