An Interplay Between MRTF-A and the Histone Acetyltransferase TIP60 Mediates Hypoxia-Reoxygenation Induced iNOS Transcription in Macrophages

Author:

Yang Yuyu,Yang Guang,Yu Liming,Lin Lin,Liu Li,Fang Mingming,Xu Yong

Abstract

Cardiac ischemia-reperfusion injury (IRI) represents a major pathophysiological event associated with permanent loss of heart function. Several inter-dependent processes contribute to cardiac IRI that include accumulation of reactive oxygen species (ROS), aberrant inflammatory response, and depletion of energy supply. Inducible nitric oxide synthase (iNOS) is a pro-inflammatory mediator and a major catalyst of ROS generation. In the present study we investigated the epigenetic mechanism whereby iNOS transcription is up-regulated in macrophages in the context of cardiac IRI. We report that germline deletion or systemic inhibition of myocardin-related transcription factor A (MRTF-A) in mice attenuated up-regulation of iNOS following cardiac IRI in the heart. In cultured macrophages, depletion or inhibition of MRTF-A suppressed iNOS induction by hypoxia-reoxygenation (HR). In contrast, MRTF-A over-expression potentiated activation of the iNOS promoter by HR. MRTF-A directly binds to the iNOS promoter in response to HR stimulation. MRTF-A binding to the iNOS promoter was synonymous with active histone modifications including trimethylated H3K4, acetylated H3K9, H3K27, and H4K16. Further analysis revealed that MRTF-A interacted with H4K16 acetyltransferase TIP60 to synergistically activate iNOS transcription. TIP60 depletion or inhibition achieved equivalent effects as MRTF-A depletion/inhibition in terms of iNOS repression. Of interest, TIP60 appeared to form a crosstalk with the H3K4 trimethyltransferase complex to promote iNOS trans-activation. In conclusion, we data suggest that the MRTF-A-TIP60 axis may play a critical role in iNOS transcription in macrophages and as such be considered as a potential target for the intervention of cardiac IRI.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3