Oxaloacetate enhances and accelerates regeneration in young mice by promoting proliferation and mineralization

Author:

Jaramillo Josue,Taylor Caroline,McCarley Rachel,Berger Melissa,Busse Emily,Sammarco Mimi C.

Abstract

Cell metabolism coordinates the biochemical reactions that produce carbon and ATP in order for the cell to proliferate, differentiate, and respond to environmental changes. Cell type determines metabolic demand, so proliferating skeletal progenitors and differentiated osteoblasts exhibit different levels of cell metabolism. Limb regeneration is an energetically demanding process that involves multiple types of tissues and cell functions over time. Dysregulation of cell metabolism in aged mice results in impaired regeneration, a defect that can be rescued in part by the administration of oxaloacetate (OAA). A better understanding of how cell metabolism regulates regeneration in general, and how these changes can be modulated to benefit potential regenerative strategies in the future is needed. Here we sought to better understand the effects of OAA on young mice and determine whether the same mechanism could be tapped to improve regeneration without an aged-defect. We also asked which dosing time periods were most impactful for promoting regenerative outcomes, and whether these effects were sustained after dosing was stopped. Consistent with our findings in aged mice we found that OAA enhanced regeneration by accelerating bone growth, even beyond control measures, by increasing trabecular thickness, decreasing trabecular spacing, and improving the patterning by decreasing the taper, making the regenerated bone more like an unamputated digit. Our data suggests that the decrease in spacing, an improvement over aged mice, may be due to a decrease in hypoxia-driven vasculature. Our findings suggest that OAA, and similar metabolites, may be a strong tool to promote regenerative strategies and investigate the mechanisms that link cell metabolism and regeneration.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference30 articles.

1. The amazing osteocyte;Bonewald;J. bone mineral Res. official J. Am. Soc. Bone Mineral Res.,2011

2. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth;Bonnet;Cancer Cell,2007

3. Appendage regeneration in adult vertebrates and implications for regenerative medicine;Brockes;Science,2005

4. Vertebrate limb regeneration and the origin of limb stem cells;Bryant;Int. J. Dev. Biol.,2002

5. Sirtuin 3 deficiency does not impede digit regeneration in mice;Busse;Sci. Rep.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3