Long Non-coding RNA MEG3 Promotes Pyroptosis in Testicular Ischemia-Reperfusion Injury by Targeting MiR-29a to Modulate PTEN Expression

Author:

Ning Jin-zhuo,He Kai-xiang,Cheng Fan,Li Wei,Yu Wei-min,Li Hao-yong,Rao Ting,Ruan Yuan

Abstract

Increasing evidence shows that the abnormal long non-coding RNAs (lncRNAs) expression is closely related to ischemia-reperfusion injury (I/R) progression. Studies have previously described that lncRNA MEG3 regulates pyroptosis in various organs I/R. Nevertheless, the related mechanisms of MEG3 in testicular I/R has not been clarified. The aim of this research is to unravel underlying mechanisms of the regulation of pyroptosis mediated by MEG3 during testicular I/R. We have established a testicular torsion/detorsion (T/D) model and an oxygen-glucose deprivation/reperfusion (OGD/R)-treated spermatogenic cell model. Testicular ischemic injury was assessed by H&E staining. Western blotting, quantitative real-time PCR, MDA, and SOD tests and immunohistochemistry measured the expression of MEG3 and related proteins and the level of ROS production in testicular tissues. Quantitative real-time PCR and western blotting determined the relative expression of MEG3, miR-29a, and relevant proteins in GC-1. Cell viability and cytotoxicity were measured by CCK-8 and LDH assays. Secretion and expression levels of inflammatory proteins were determined by ELISA, immunofluorescence and western blotting. The interaction among MEG3, miR-29a, and PTEN was validated through a dual luciferase reporter assay and Ago2-RIP. In this research, we identified that MEG3 was upregulated in animal specimens and GC-1. In loss of function or gain of function assays, we verified that MEG3 could promote pyroptosis. Furthermore, we found that MEG3 negatively regulated miR-29a expression at the posttranscriptional level and promoted PTEN expression, and further promoted pyroptosis. Therefore, we explored the interaction among MEG3, miR-29a and PTEN and found that MEG3 directly targeted miR-29a, and miR-29a targeted PTEN. Overexpression of miR-29a effectively eliminated the upregulation of PTEN induced by MEG3, indicating that MEG3 regulates PTEN expression by targeting miR-29a. In summary, our research indicates that MEG3 contributes to pyroptosis by regulating miR-29a and PTEN during testicular I/R, indicating that MEG3 may be a potential therapeutic target in testicular torsion.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3